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Ophus et al.

RESEARCH

Automatic Software Correction of Residual
Aberrations in Reconstructed HRTEM Exit
Waves of Crystalline Samples
Colin Ophus1*, Haider I Rasool2,3, Martin Linck4, Alex Zettl2,3 and Jim Ciston1

Abstract

We develop an automatic and objective method
to measure and correct residual aberrations in
atomic-resolution HRTEM complex exit waves for
crystalline samples aligned along a low-index zone
axis. Our method uses the approximate rotational
point symmetry of a column of atoms or single
atom to iteratively calculate a best-fit numerical
phase plate for this symmetry condition, and does
not require information about the sample thickness
or precise structure. We apply our method to two
experimental focal series reconstructions, imaging a
β-Si3N4 wedge with O and N doping, and a
single-layer graphene grain boundary. We use peak
and lattice fitting to evaluate the precision of the
corrected exit waves. We also apply our method to
the exit wave of a Si wedge retrieved by off-axis
electron holography. In all cases, the software
correction of the residual aberration function
improves the accuracy of the measured exit waves.
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Aberration correction; Inline holography; Off-axis
holography; Wavefront sensing
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Introduction
Hardware aberration correction for electron beams
in transmission electron microscopy (TEM) is now
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widespread, substantially improving the interpretable
resolution in TEM micrographs [1–4]. This technology
is enabled by the combination of two factors; the abil-
ity to accurately measure optical aberrations in the
electron beam, and a system of multipole lenses that
can compensate for these measured aberrations. Many
authors have studied the problem of direct aberration
measurement, and most solutions involve capturing a
Zemlin tableau [5–8]. This method requires a thin,
amorphous object that can approximate an ideal weak-
phase object. Many samples of interest however are
partially or fully crystalline. Thus, aberrations must
be measured and corrected on an amorphous sample
region before micrographs can be recorded on the re-
gion of interest. During this delay, the aberrations may
drift due to electronic instabilities in the microscope
[9], and this factor coupled with imperfect hardware
correction can lead to residual aberrations in the re-
sulting electron plane wave measurements.

One possible solution is to reconstruct the complex
electron wavefunction via inline holography, by taking
a defocus series and employing an exit wave recon-
struction (EWR) algorithm such as Gerchberg-Saxton
or the Transport of Intensity Equation [10–16]. Alter-
natively, an exit wave can be reconstructed by inter-
ferometric methods, i.e. off-axis electron holography
[17,18]. We can then estimate the residual aberrations
and apply a numerical phase plate to the reconstructed
complex wavefunction to produce aberration-free im-
ages [19]. These numerical corrections fall into two
categories; manual correction, where the operator at-
tempts to determine the aberrations present by trial
and error, and automatic correction where the aberra-
tions are directly measured in some manner. While the
theory of aberration determination from a thin, amor-
phous sample is well-understood (and used to calibrate
the hardware corrector on a modern TEM) [20–22],
purely crystalline samples are much more difficult to
correct due to the sparsity of diffraction space informa-
tion [23]. If the sample is a low-index zone axis image of
a crystal, there is no simple Fourier space technique to
measure residual aberrations for a sample of unknown
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thickness or composition. Some authors have proposed
using entropy methods [24] or measuring atomic col-
umn asymmetry within Fourier space [25] to measure
residual aberrations. However, the first method re-
quires well-separated atomic columns and the second
can have difficulty measuring multiple simultaneous
aberrations. We also note that some authors have used
converged scanning transmission electron microscopy
(STEM) probes to directly evaluate the aberration co-
efficients from crystalline samples [26–28], but these
methods are not directly applicable to plane wave
TEM measurements.

In this study, we propose a new method to measure
aberrations from TEM images of crystalline samples
containing on-axis atomic columns or single atoms. We
use these measurements of residual aberrations to iter-
atively correct the complex exit wave until convergence
is reached. Our method requires only a rough guess of
the projected crystal structure and a regular (unde-
fected) crystalline region in the image field of view. We
test this method on three experimental datasets, focal
series reconstructions of a β-Si3N4 wedge with O and
N doping and a single-layer graphene grain boundary,
and an off-axis hologram measurement of a Si wedge.

Theory
Calculating Images with Radial Point Symmetry

HRTEM images of thin, crystalline samples oriented
along low-index zone axes usually have a high de-
gree of radial point symmetry, around each atomic (or
atomic column) coordinate. When multiple peaks are
close together, interference between adjacent columns
can create amplitude or phase images that appear to
break the radial symmetry. However this symmetry
breaking is often due to constructive and destructive
interference of the underlying complex wave, and the
overall exit wave can still be well-described as a sum
of isolated, radially-symmetric complex atomic shape
functions. To demonstrate this, we have simulated sev-
eral examples of exit waves of a silicon sample using
the multislice method [29], the amplitudes of which are
plotted in Fig 1(a).

The first two simulations in Fig 1(a), the [001] and
[111] zone axes, have equally spaced atomic columns
which show local radial symmetry around each peak.
The third and fourth simulations in Fig 1(a) con-
tain Si dumbbells and appear to have broken radial
symmetry at much shorter distances. These images
however can be well-described by a sum of identi-
cal, radially-symmetric atomic peak shape functions,
shown in Figs. 1(b)-(d).

A point-symmetrized image can be calculated using
a few simple steps. First, the atomic coordinates must
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Figure 1 (a) Simulated exit waves of Si at different
thicknesses and zone axes. (b) Symmetrized exit waves from
(a). (c) and (d) Real and imaginary parts of fitted atomic
shape functions.

be estimated (from a known structure) or fitted to the
image. Each exit wave pixel value ψ(x, y) is equal to

ψ(x, y) = A0+

J∑
j=1

KJ∑
k=1

sj

[√
(x− xjk)2 + (y − yjk)2

]
,

(1)

where A0 is a constant carrier wave value, there are J
atom types included, sj(|(x, y)|) is the complex atomic
shape function for each atom type J , and there are KJ

atoms of type J , located at coordinates (xjk, y
j
k).

Next, we calculate an atomic distance matrix A
which relates all image pixels to their distances to all
nearby atomic coordinates. Each row of this matrix
corresponds to a different image pixel (x, y), while the
columns represent all possible (rounded) distances to
all nearby atomic sites, divided up into different atomic
species. This matrix is moderately sparse, where the
only non-zero values are ones in the first column (cor-
responding to A0) and ones at the rounded distances
of all atoms within some cutoff radius. This formalism
allows us to solve for discretized atomic shape func-
tion(s) sj using the set of linear equations given by

A


A0

s1
...
sJ

 = ψ(x, y), (2)

which can be solved using typical regression methods.
This symmetrization method has been applied in the
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examples shown in Fig.1(b), where the fitted atomic
shape functions are given in Figs. 1(c) and (d). In
all cases, the symmetrized exit wave is in perfect or
good agreement with the original exit waves shown in
Fig. 1(a). This simple method for calculating point-
symmetrized exit waves forms the basis of the aber-
ration correction algorithm presented here. Note that
while we have chosen to solve the peak shape func-
tions in real space, it is also possible to deconvolve a
point spread function in Fourier space, similar to the
method described by van den Broek et al. [30]. The
real-space method simplifies handling of the bound-
ary conditions (by simply not including pixels that are
not surrounded by enough atomic coordinates) and can
easily handle multiple atom types. Finally we note that
a constant value (setting all non-zero values equal to
ones) does not need to be assumed for all atomic sites;
instead a complex value at the peak coordinate loca-
tion can be directly measured from the exit wave, or
refined by least squares. This step improves accuracy if
the reference region used for solving the residual aber-
rations has non-constant thickness.

Coherent Wave Aberrations
A complex exit wave ψ(x, y) measured with off-axis
holography or reconstructed from inline holography
that contains residual aberrations described by the
Fourier-space aberration function χ(qx, qy) is related
to the aberration-free exit wave ψ0(x, y) by the ex-
pression [29]

Ψ(qx, qy) = Ψ0(qx, qy) exp [−iχ(qx, qy)] (3)

where Ψ(qx, qy) and Ψ0(qx, qy) are the 2D Fourier
transforms of ψ(x, y) and ψ0(x, y) respectively. The
vector (x, y) and (qx, qy) represent the real space and
Fourier space coordinate systems respectively. The
aberration function used here is the basis function

χ(qx, qy) =
∑
m=0

∑
n=0

[
λ2(qx

2 + qy
2)
]m+n/2

·
{
Cxm,n cos [n · atan2 (qy, qx)]

+Cym,n sin [n · atan2 (qy, qx))]
}
,(4)

where (Cxm,n, C
y
m,n) are the coefficients of the two or-

thogonal aberrations of order (m,n) in units of radi-
ans, and atan2(qy, qx) is the arctangent function which
returns the correct sign in all quadrants (all combina-
tions of signs of qx and qy). The radial magnitude of
each aberration scales with |q|2m+n and the rotation
symmetry is given by n. Note that when n = 0, the
aberration is radially symmetric (e.g. constant value,
defocus, spherical aberration) and no Cym,n term is nec-
essary. Various authors use different conventions for

dimensioning the coefficients (Cxm,n, C
y
m,n) [7, 19, 31].

We also note that this function describes only coher-
ent wave aberrations that are constant over the field
of view (aplanatic).

Estimating Residual Aberration Coefficients
We now show how symmetrized exit waves can be used
to estimate aberrations in images of crystalline sam-
ples. As an example, we have simulated exit waves
with synthetic aberrations in Figs. 2(a)-(b), for a 19.8
nm thick [011]-Si sample. In all cases except for the
aberration-free image, applying an aberration phase
plate causes distortions in the atomic images.
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Figure 2 (a) Phase plates for synthetic aberrations applied to
simulated Si [011] exit waves, giving (b) amplitudes images.
(c) Symmetrized waves corresponding to (b). (d) Fitted phase
plate for aberrations up to 6th order. (e) Exit wave where
phase plate in (d) is applied to images in (b).

Next, a symmetrized image is calculated from the
aberrated wave and the approximate peak positions,
shown in Fig. 2(c). The resulting images appear
to be approximately aberration free due to the ra-
dial symmetry imposed by constructing an exit wave
from radially-symmetric point atomic shape functions,
and can be used to estimate the aberration function
χ(qx, qy). To generate this estimate, we calculate the
windowed Fourier transforms of both the aberrated
and symmetrized waves. A window function is used to
prevent boundary errors. Next, we measure the differ-
ence in phase between the two FFTs and use weighted
least squares to fit the aberration coefficients. The
weighting function is set to the magnitude of the origi-
nal exit wave Fourier transform. This ensures that the
strongest Bragg components dominated the aberration
function fit.

Fig. 2(d) shows the fitted aberration function, in-
cluding all aberrations up to 6th order. The fits are
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a good, but not perfect, match to the real aberration
functions in Fig. 2(a). Applying the fitted aberration
functions to the aberrated images produces the images
plotted in Fig. 2(e). Similar to the fitted aberration
function, these images are improved but not yet free
of aberrations. This estimation method for the aber-
ration function can be applied iteratively to produce
an accurate measurement of the residual aberration
functions.

Iterative Algorithm for Estimating Residual Aberrations
Our proposed algorithm for correcting residual aber-
rations in complex exit waves of crystalline samples is
diagrammed in Fig. 3. We start with a reference re-
gion in the exit wave ψ(x, y). This region should be
roughly constant thickness and contain as few lattice
defects as possible. Increasing the area of the reference
region will improve the accuracy of the fitted aberra-
tions, at the cost of increased computation time. From
this reference region, we generate a list of atomic co-
ordinates, and if multiple types of atoms are present,
the corresponding site identities.

Next we calculate the distance matrix A between
all pixels in the reference region and the atomic coor-
dinates. This procedure is shown geometrically for a
single pixel in Fig. 3(c). We then use linear regression
to solve for the complex atomic shape function for all
species present. The distance matrix A, carrier wave
value A0, and the shape functions s1...sJ are then used
to calculate a symmetrized exit wave.

Subsequently, we compute a windowed Fourier trans-
form of the current guess for the aberration-free exit
wave (in the first iteration the measured exit wave
is used) and the symmetrized wave. We measure the
phase difference of these Fourier transforms, shown in
Fig. 3(f). We use weighted least squares to fit the aber-
ration coefficients, where the Fourier transform ampli-
tude of the exit wave is used as the weighting function.
These aberration function coefficients are added to the
current values from the previous iteration (originally
initialized to zero). This fitted aberration function is
then applied to the original exit wave as in Fig. 3(g),
generating an updated guess for the aberration-free
exit wave. If the corrected exit wave update is below
a user-defined threshold, we assume the algorithm is
converged and output the result. If not, we perform
additional iterations.

The algorithm described in Fig. 3 has three possible
re-entry points for additional iterations, shown by the
dashed lines. If we assume the atomic positions are ac-
curate, we do not need to update them or recalculate
the distance matrix A. Since this is the most time-
consuming step of the algorithm, skipping it for ad-
ditional iterations saves most of the calculation time.
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reconstruct
complex wave.

Estimate atom
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known structure.
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Figure 3 Flow chart for the algorithm proposed in this work.
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Alternatively, the atomic positions can be updated by
peak fitting or a correlation method, starting the next
iteration at the step in Fig. 3(b). If the atomic posi-
tions are accurate enough, there is one other possible
update at the start of each iteration. Each atomic site
can be updated with a complex scaling coefficient to
approximate slight thickness changes in the reference
region. Both of these alternative update steps require
updating the distance matrix A, step Fig. 3(c).

Limitations of the Method
The algorithm for measuring and correcting residual
wave aberrations described above requires a relatively
flat, defect-free region within a portion of the full field-
of-view. A small reference region will degrade the ac-
curacy of the measured aberration function. In the ex-
perimental results shown below, the size of the refer-
ence region was ≈50 unit cells for the Si3N4 sample,
≈1000 unit cells for the graphene sample, and ≈150
unit cells for the silicon wedge. The accuracy of the
residual aberration function also depends on the signal
to noise and accuracy of the exit wave reconstruction
or measurement. If the crystalline region of the sam-
ple contains random variation of the exit wave due
to an amorphous layer on the surface, or systematic
variations due to surface reconstruction, the resulting
aberration function may contain small errors. This is-
sue can be minimized by using as large a reference
region as possible, and with good sample preparation
methods.

Another possible source of error is sample mis-tilt.
Completely eliminating sample tilt is virtually impos-
sible, and small amounts of sample tilt can mimic
some residual aberration functions, in particular ax-
ial coma. Similarly, if the sample thickness changes
linearly over the reference region, our method may fit
a small amount of erroneous axial coma under some
circumstances. However, because both of these effects
heavily sample-dependent, it is impossible to assign
firm numbers to the possible degree or error. In general
we recommend using complementary measurements to
verify results, such as measurement of mean atomic co-
ordinates or unit cell dimensions or angles from x-ray
diffraction.

Methods
Simulations
Multislice simulations were performed using Matlab
code following the methods of Kirkland [29]. Unless
otherwise noted, all simulations were performed at 300
kV, a pixel size of 0.05 Å and 32 frozen phonon config-

urations. An information limit of 1.5 Å
−1

was enforced
by applying an 8th order Butterworth filter to the exit

waves in Fourier space. The exit waves were not fur-
ther defocused after propagation through the sample,
approximating a white atom contrast condition for all
amplitude images.

Experiments
The Si3N4 sample was flat polished on one side us-
ing an Allied MultiPrep system, then mirror polished
with 0.1 µm diamond paper. The second side was dim-
pled and finished with a 1.0 µm diamond slurry to a
thickness of about 20 µm. The sample was then ion
milled on a Gatan PIPS at 0◦C using 5 kV Ar ions at
an angle of 5◦ for 3 h, then at 1 kV for 30 min, fol-
lowed by 0.5 kV for 5 min. This latter sample was not
carbon coated and was found to be stable under the
beam operated at 300 kV. Focal series of this sample
were recorded at 300 kV in the TEAM 0.5, an FEI
TITAN-class microsope [3]. The corrector was tuned
for bright atom contrast (C3 = -6 µm, C5 = 2.5mm)
and the monochromater was excited to provide an en-
ergy spread ¡ 0.15 eV at full width half maximum. The
focal series were acquired with a step size of 1.72 nm
ranging from -34.4 nm underfocus to 34.4 nm overfo-
cus, recorded on a Gatan Ultrascan 1000.

The graphene sample was grown at 1035◦C by chemi-
cal vapor deposition onto a polycrystalline copper sub-
strate. The substrate was held at 150 mTorr hydrogen
for 1.5 hours before 400 mTorr methane was flowed
over it for 15 minutes to grow single layer graphene
[32]. This sample was imaged in the TEAM 0.5 mi-
croscope using mochromated, spherical aberration-
corrected 80 kV imaging with the monochromater ex-
cited to provide an energy spread ¡ 0.15 eV at full
width half maximum.. A focal series of 5 images with
a step size of 1.2 nm was recorded on a Gatan OneView
detector.

An off-axis hologram of a silicon wedge was recorded
in the Cc-Cs-corrected TEAM I microscope operated
at 80 kV accelerating voltage using an exposure time
of 8 sec on a Gatan Ultrascan 1000. The [011]-silicon
sample was laser cut from a 3 mm disc down to as 1
mm to fit the TEAM stage geometry [33]. For holo-
gram acquisition, the corrector was tuned to correct
all aberrations, up to and including 3rd order, below
the measurement accuracy of the aberrations. The exit
wave was reconstructed from the hologram using sim-
ple numerical Fourier optics [17].

Focal Series Reconstruction and Data Analysis
All focal series reconstructions and data processing ex-
cept for the off-axis holographic reconstruction were
performed using Matlab code. Focal series reconstruc-
tions were performed using the Gerchberg-Saxton al-
gorithm [10] where the implementation for HRTEM is
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described fully in [11, 12]. During reconstruction sub-
pixel image alignments were applied using the discrete
Fourier transform method given in [34].

To quantify the atomic column positions in a com-
plex image, we used nonlinear least squares to fit the
peak positions using a two-dimensional elliptic Gaus-
sian function for both the real and imaginary compo-
nents. This peak function β(x, y) defined as

β(x, y) = b1 exp
[
−b2∆x2 − 2b3∆x∆y − b4∆y2

]
+i b5 exp

[
−b6∆x2 − 2b7∆x∆y − b8∆y2

]
+b9 + i b10, (5)

where b1 through b10 are the real fitting coefficients
and ∆x = x − x0 and ∆y = y − y0 are the distances
from the peak center (x0, y0). For the Si-N dumbbells,
two complex elliptic Gaussian functions were fitted to
both peaks simultaneously.

Results and Discussion
Exit Wave Reconstruction of Si3N4

The first sample analyzed is a SiAlON wedge sample
(isostructural to β-Si3Al4 with Al and O doping the Si
and N sites to give the composition Si5.6Al0.4O0.4N7.6),
recorded at 300 kV along the [0001] direction. Density
functional theory [35] and neutron-scattering studies
[36] predict that O might preferentially dope the 2a
sites with a nearby Al balancing the extra charge, caus-
ing a 21 pm shift in one of three directions [37]. X-ray
diffraction by contrast shows no site preference for Al
or O [38]. We therefore wish to measure the column po-
sitions with as high a precision as possible to evaluate
the dopant-ordering hypothesis and its potential local
variation at the nanoscale. The SiAlON wedge will be
referred to as the Si3N4 sample for the remainder of
this paper.

Fig. 4 shows the application of the above method
for measuring residual aberrations to a focal series re-
construction of the Si3N4 sample. A reference region
was selected near the middle of the reconstructed exit
wave, the amplitude of which is shown in Fig. 4(a).
Two atom types are included (Si and N sites), and the
same shape function is used for the two unique N sites.
Figs. 4(c) and (d) show that the aberration measure-
ment is essentially converged after 5 iterations, and af-
ter 20 iterations the exit wave update approaches zero.
The reconstruction algorithm therefore quickly evolves
the aberration function coefficients towards the values
which best approximate the point symmetrized exit
wave. Note that the two are not exactly equivalent,
as the experimental exit wave contains substantially
more noise and can contain lattice distortions or small
amounts of strain due to bending of the sample. No

symmetrization is applied to the actual experimental
exit wave in this approach. Furthermore, no additional
filtering beyond the deconvolution with the residual
wave aberration function and the informational limit
cutoff have been applied to the experimental exit wave.
The numerical aberration coefficients are given in the
appendix.

After measuring the residual aberrations from a
small reference region, shown in Fig. 4, we have cor-
rected these aberrations on the full image and plotted
the amplitude in Fig. 5. The atomic positions appear
extremely sharp, and no defects are visible other than
the vacuum at the edge of the wedge sample. From
multislice simulations we estimate the thickness of the
crystalline portion of this sample ranges from 3-7 nm.

To quantify the atomic column positions, we used
nonlinear least squares to fit the peak positions using
a complex, two-dimensional elliptic Gaussian function.
For the Si-N dumbbells, two complex elliptic Gaussian
functions are fitted simultaneously. The fitted peak po-
sitions relative to the ideal Si3N4 lattice positions for a
subset of 180 of the peaks are plotted in Figs. 5(b) and
(c) from the exit waves before and after aberration cor-
rection. From the root-mean-square (RMS) displace-
ments plotted, we see that the aberration correction
has improved the fitting precision on most of the lat-
tice sites. In particular, the dumbbells with strongly-
overlapping peak functions have improved substan-
tially, reaching peak precisions as low as 1.1 pm and
1.4 pm for the Si and N sites respectively. The isolated
2a N site position precision is not strongly affected by
the residual aberrations.

Returning to the original question of measuring
atomic shifts due to the doping, we have plotted the
bond length distributions of all nearest-neighbor sites
that are more than 2 unit cells distance from the vac-
uum edge and the edge of the full micrograph, in
Figs. 5(d) and (e). Before aberration correction, the
bond length distribution for the dumbbell Si-N and the
2a N site - Si bonds appears to follow a bimodal dis-
tribution. The larger Si-N bond spacing in the hexag-
onal rings is even more distorted, spreading over ap-
proximately 50 pm. However after correcting the resid-
ual aberrations, all bond length distributions become
monomodal. Therefore we found no evidence of sys-
tematic shifts in the 2a N sites. Additionally, no lo-
cal distortions of the β-Si3N4 lattice such as those de-
scribed in [39] were observed in this experiments. Fi-
nally, we note that because the reference lattice con-
tains 14 site locations in each unit cell where measure-
ments are taken, it is highly unlikely that we could be
forcing one of the sites (such as a systematic 2a dis-
tortion) to be at an incorrect location. The algorithm
should select the phase plate function which best min-
imizes the global aberrations.
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from the ideal positions are scaled by a factor of 4 for the plotting, numbers indicate the RMS displacement in picometers. (d) and
(e) Bond lengths from almost all peaks measured in image from before and after aberration-corrected images respectively.
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Single-Layer Graphene Grain Boundary
The Si3N4 sample analyzed in the previous section

did not contain any lattice defects, making it a rela-
tively easy test of the correction algorithm described
in this paper. A better test of our method would
be a crystalline sample that contains a large num-
ber of possible local bond angles and lengths, allowing
for many possible measurement errors due to residual
aberrations. One such sample is the incommensurate
grain boundaries found in polycrystalline single-layer
graphene [32, 40, 41]. Fig. 6(a) shows the exit wave
phase of a graphene grain boundary with a large field
of view after applying the aberration correction de-
scribed in this work, with the aberration function inset
and the numerical coefficients given in the appendix.
Topological variation in the sample has created regions
where amorphous carbon can collect on the sample
surface, but the majority of the field of view shows
clean, defect-free graphene. Near the center of the field
of view, an incommensurate boundary runs vertically.

The phase of the unobstructed region of the graphene
grain boundary is plotted in Figs. 6(b) and (c), for
the uncorrected and corrected exit waves respectively.
Before aberration correction, we observe that the
graphene lattices are extremely regular, but contain
very little interpretable information. The grain bound-
ary is particularly messy, due to the complex inter-
action of non-radially symmetric residual aberrations
with the various atomic spacings present. By contrast,
the corrected phase image in Fig. 6(c) has very well
resolved atomic sites both in the crystalline lattices
and along the grain boundary. Almost every site can
be identified and the boundary structure can be easily
quantified. We have used focal series exit wave recon-
struction and the aberration correction algorithm de-
scribed in this paper to characterize the structure of
many different single-layer graphene grain boundary
misorientations [42–44].

Off-Axis Hologram of a Silicon Wedge
The experimental exit waves in the previous two sec-

tions were reconstructed from focal series. Focal se-
ries reconstruction has a well-known limitation that
it cannot accurately reconstruct lower spatial frequen-
cies [12, 16]. This leads to exit wave phase images in
the reconstructions that are somewhat flatter (lower
peak-to-peak range) than the true exit wave phases.
By contrast, since off-axis holography uses a reference
wave created by an electron biprism, it can measure
the absolute phase of an exit wave [17, 18]. In order
to test our method on an exit wave containing the
full range of spatial frequencies, we have recorded an
off-axis hologram of a silicon wedge with an [011] ori-
entation. The phase of this reconstructed exit wave is

plotted in Fig. 7(a). We have then applied our residual
aberration correction algorithm to this measurement,
shown in Fig.7(b). The numerical aberration coeffi-
cients are given in the appendix.

The range of phases measured in these images is sub-
stantially higher than those in the previous focal series
measurements, almost 2π along the thinnest edge of
the sample. After aberration correction, the Si dumb-
bells are more cleanly resolved. To show the dumbbell
structure more clearly, we have plotted line traces in
Figs. 7(c) and (d), for the uncorrected and corrected
phase images respectively. After correction, almost all
dumbbells show clear separation between the two Si
atomic columns.

Conclusion
We have developed an algorithm for measuring and
correcting residual coherent wave aberrations in com-
plex exit waves of crystalline samples, measured in
transmission electron microscopy. Our algorithm relies
on creating a synthetic exit wave by applying point-
symmetrization to all atomic columns in a reference
region, to approximate the aberration-free exit wave.
Because our method is objective and automatic, it is
not prone to operator errors that could be introduced
from manual correction of the residual aberrations. It
is important to note that no symmetrization is applied
to the final experimental exit wave. We have applied
our method to three experimental datasets, focal se-
ries reconstructions of a Si3N4 wedge and a single-layer
graphene grain boundary, and an off-axis hologram of
a silicon wedge. In all cases, the residual aberration
correction improved the precision, accuracy and inter-
pretability of the complex exit waves. Our algorithm
is simple to implement, and applicable to a large class
of experimental exit wave measurements of crystalline
samples oriented along a low-index zone axis.

Appendix
The numerical aberration coefficients found in this
study are given in Table 1, using the convention used
by CEOS aberration correctors [7]. In all images, the
origin is in the upper left corner and the x-axis points
down while the y-axis points right.
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Figure 6 (a) Phase of an aberration-corrected exit wave of single-layer graphene, containing a grain boundary. Fitted aberration
function is shown inset with an outer radius of 8 nm−1. (b) and (c) Enlarged view of the unobstructed boundary before and after
residual aberration correction respectively.
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aberration function is shown inset in (b) with an outer radius
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Table 1 Numerical aberration coefficients measured in this study
for the Si3N4, graphene grain boundary and silicon wedge
experimental datasets.

Order CEOS Si3N4 Graphene Si Wedge
m n Name Cx Cy Cx Cy Cx Cy

0 2 A1 0.7 2.0 4.0 -4.7 0.0 2.0 nm
0 3 A2 -5.2 66.5 60.1 -112 -15.3 -35.7 nm
1 1 B2 10.4 67.6 -123 -79.8 23.0 84.8 nm
0 4 A3 0.6 0.2 -5.6 -2.8 -1.4 -1.6 µm
1 2 S3 -1.5 0.0 -3.4 4.3 1.0 -1.4 µm
0 5 A4 0.7 -4.6 -26.3 31.2 -7.9 5.6 µm
1 3 D4 -6.7 -15.0 -26.1 18.7 8.6 12.6 µm
2 1 B4 31.7 -47.8 99.2 55.7 -5.0 -30.3 µm
0 6 A5 -1.4 0.3 -0.8 -3.1 0.0 0.0 mm
1 4 R5 -0.2 -0.3 1.1 0.6 0.0 0.2 mm
2 2 S5 2.6 -0.2 0.5 -1.9 -0.6 0.5 mm
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